Aerospace systems are inherently stochastic and increasingly data-driven, thus hard to formally verify. Data-driven statistical models can be used to estimate the state and classify potentially anomalous conditions of aerospace systems from multiple heterogeneous sensors with high accuracy. In this paper, we consider the problem of precisely bounding the regions in the sensor input space of a stochastic system in which safe state classification can be formally proven. As an archetypal application, we consider a statistical model created to detect aerodynamic stall in a prototype wing retrofitted with piezoelectric sensors and used to generate data in a wind tunnel for different flight states. We formally define safety envelopes as regions parameterized by
Reference
Journal of Aerospace Information Systems 2023 20:1, 3-16